临床上,大块骨缺损的修复是人类面临的挑战之一。3D打印技术可以便捷的制备形状可控的多孔支架材料,广泛应用于生物材料和骨组织工程领域。传统3D打印支架具有多孔的结构,将材料植入缺损部位后,营养物质和细胞沿着孔向内渗入支架内部,有利于骨组织向内长入,促进骨缺损的修复。
然而,传统3D打印支架在大块骨缺损方面仍显不足。传统3D打印支架由实心的基元堆叠而成,降低了材料的孔隙率;传统3D打印支架的孔隙呈阶梯三维延伸状,并没有形成平直的孔道状,在流体力学上有较强的流体阻力,不利于营养物质和细胞渗入支架内部,阻碍了修复过程中的成血管和成骨。
近日,中国科学院上海硅酸盐研究所研究员吴成铁与常江带领的研究团队,在3D打印复杂结构生物陶瓷用于血管化大块骨缺损修复方面取得新进展。
仿生莲藕结构提升大块骨缺损修复能力
研究团队受到自然界中莲藕内部平行多通道结构的启发,采用3D打印制备出仿生莲藕支架,并与上海交通大学附属第九人民医院蒋欣泉团队合作,进一步发现该类支架相对于传统3D打印支架,具有显著提高大块骨缺损的修复的能力。
受自然界启发制备出仿生莲藕支架用于骨组织工程。(c-g)材料制备过程。
研究团队把传统3D打印支架每个基元的内部做成平行多通道结构,这种结构有望促进新血管和骨组织的长入,有利于骨缺损的修复,并重新设计了内部共轴镶嵌的挤压式3D打印针头,通过改进的3D打印制备方法,实现一次性打印仿生莲藕支架,改进的3D打印方法能够调控仿生莲藕支架的物理和化学性质。
3D打印仿生莲藕支架理化性质的调控。(a)不同材料的仿生莲藕支架,(b)不同形状的仿生莲藕支架和(c)不同孔道尺寸的仿生莲藕支架。
采用这种方法不仅可以用各种生物陶瓷(Akermanite, Al2O3, ZrO2)、金属Fe和高分子海藻酸钠等多种材料制备出仿生莲藕支架,而且能制备出不同形状、孔道数目、孔道直径的仿生莲藕支架。此外,通过调控3D支架的基元堆砌方式和孔道数目,来调控该仿生莲藕支架的孔隙率和力学强度。该仿生莲藕支架的最高孔隙率达到80%,力学强度可达40MPa以上,能满足骨缺损修复材料的要求。
仿生莲藕支架孔隙率和力学强度的调控。(a)三种不同基元堆砌方式的仿生莲藕支架,具有不同数目孔道和堆砌方式的仿生莲藕支架的(b)孔隙率和(c)力学强度。
研究团队进一步通过选择生物活性良好的镁黄长石(Akermanite)陶瓷作为基体代表材料,来探究这种仿生莲藕材料在骨组织再生工程中的性能和应用,分别制备了具有单孔道、双孔道、三孔道和四孔道的仿生莲藕生物陶瓷支架。体外生物学分析结果表明,与传统3D支架相比,该仿生莲藕镁黄长石生物陶瓷支架更有利于细胞的粘附和增殖,并随着通道数目的增加,其效果越明显增加。
仿生莲藕支架的体外生物学分析。4周的大鼠肌袋植入实验中,(a)大量细胞长入莲藕状孔道内部,(b,c)血管微灌注实验结果表明,血管成功长入到孔道内;12周的兔子颅骨缺损实验中的(d,e)micro-CT和(f)组织切片VG染色结果,(g)骨缺损部位新骨的统计学分析结果都表明仿生莲藕支架具有更好的骨修复能力。
体内动物实验表明,该仿生莲藕生物支架提高了骨组织再生能力和成血管化效应,有利于骨缺损的修复。与传统的3D生物活性支架相比,该3D打印仿生莲藕生物支架更有利于营养物质向支架内部的传输,引导细胞和组织向内长入,从而促进前期的成血管以及后期的成骨,提高了骨缺损的修复性能。由于其多通道高孔隙率的结构特点,该种材料还可以用于药物大分子装载、表面功能化修饰以及催化、能源、环境等其他领域。
仿生莲藕支架的体内生物学分析。(a)兔子间充质干细胞(BMSCs)在仿生莲藕支架上的SEM照片,(c-e)细胞培养在支架上第3天的共聚焦显微镜照片,仿生莲藕支架的(f)细胞粘附和(g)增殖结果。
研究工作得到了中组部青年千人计划、国家重点研发计划和国家自然基金、中科院前沿科学研究计划等的资助。相关研究成果发表在Advanced Science上,并申请专利一项。论文题为:3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration 。
文章来源:中国科学院上海硅酸盐研究所
下载资料,请加入
3D产业链QQ群:529965687
查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至editor@51shape.com