热等静压对L-PBF增材制造颗粒增强钛基复合材料组织性能影响

以下文章来源于材料科学与工程 ,作者材料科学与工程

谷专栏

增材制造(AM)技术已广泛应用于航空航天、石油化工、医疗等多个领域的零件制造。激光粉末床熔融(L-PBF)技术是目前主流的金属增材制造技术,L-PBF技术可使用多种原料粉末生产零件,其中α+β两相钛合金Ti6Al4V(以下简称Ti64)是最理想的AM合金之一,因为它在多种负载条件下具有不同特性。

由L-PBF生产的Ti64部件抗拉强度和伸长率分别在1040-1211MPa和1.4-6.5%范围内。但是,ASTM F136标准规定伸长率应至少为10%,抗拉强度应高于860MPa。因此,必须进行后处理以增加伸长率。为了提高Ti64的机械性能,已有报道通过L-PBF技术制备含颗粒增强相的Ti64复合材料。结果表明,Ti64的强度显著增加,但塑性下降。在增强塑性变形和其他物理特性的不同热处理中,热等静压(HIP)是优化微观结构和机械性能最有效的方法之一。虽然目前学术界已经许多关于HIP处理对L-PBF制造的Ti64微观结构和力学性能影响的报道,但HIP对L-PBF制造的颗粒增强Ti64复合材料微观结构和力学性能的研究很少。

法国索邦大学的一项最新研究揭示了HIP对氧化钇稳定氧化锆(YSZ)增强Ti64的微观结构和机械性能的影响,分析了增强体含量对微观结构和织构演变的影响

Material_Pressing_1相关论文以题为“Effect of hot isostatic pressing on microstructure and mechanical properties of Ti6Al4V-zirconia nanocomposites processed by laser-powder bed fusion”发表在Materials & Design。

block疲劳强度将远高于L-PBF加工的Ti64

这项研究通过电极感应熔化气体雾化(EIGA)生产Ti64粉末,平均粒径约25μm,另制备了含1wt%和2.5wt%纳米nYSZ的Ti64粉末(简称为ZTP1和ZTP2.5),L-PBF工艺为:层厚30μm;功率200瓦;曝光时间100μs;扫描速度700mm/s;舱口间距80μm;点距65μm。

研究发现,含增强相和未增强试样在HIP处理后接近全密度材料。微观结构研究表明,HIP后处理具有三重效果:(1)降低β相百分比;(2)增加晶粒尺寸;(3)与HIP处理之前相比,产生更均匀分布的α和β晶粒(尤其是在未增强的Ti64材料中),塑性应变大大增加,而所有材料在HIP后压缩强度仅略有变化。HIP处理后,增强后试样的显微硬度和强度仍然高于Ti64(ASTM F136)。

相比于用其他陶瓷(如TiB2和B4C)增强的钛合金,nYSZ增强和HIP处理后Ti64的机械性能更高,这证实了nYSZ增强的Ti64是航空航天和医疗领域有应用前景的材料。

Material_Pressing_2图1 初始粉末的颗粒形状

Material_Pressing_3图2 HIP处理前后试样的SEM图

Material_Pressing_4图3 在HIP处理前后,α相晶粒尺寸(沿BD方向)随nYSZ加入发生的变化

Material_Pressing_5图4 添加nYSZ和HIP处理对室温压缩真应力-真塑性应变的影响

HIP过程中出现织构演变,主要是因为发生再结晶和相变,织构强度增加可能是HIP处理后压缩强度增加的主要原因。未来应探索HIP过程中再结晶和相变机制的表征。预计这种Ti64/nYSZ材料的疲劳强度将远高于L-PBF加工的Ti64,钛基复合材料的主要特点之一就是改善钛合金的疲劳性能,这篇论文为增材制造钛基复合材料的研究提供了理论基础。

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入 QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源 l 链接到 网站原文。

分享:

你可能也喜欢...

Baidu
map