以下文章来源于材料科学与工程 ,作者材料科学与工程
Ti6Al4V广泛应用于航空航天领域,但较低的硬度和耐磨性限制了其进一步发展。据报道,添加陶瓷颗粒,如SiC、TiB和TiC,可以有效提高Ti6Al4V基体的相应性能。
目前,定向能量沉积技术(DED)是制造TiCp增强Ti6Al4V的最佳方法之一。虽然通过热处理可实现组织调控,但原位组织调控具有更高的灵活性和效率,更具优势。因此,提出电感-激光复合直接能量沉积技术(FEMI-DED)来改善缺陷和原位组织,并对FEMI-DED机理进行深入揭示。大连理工大学机械工程学院吴东江教授课题组,采用DED与FEMI-DED制备了10 wt.% TiCp增强Ti6Al4V,对比分析发现FEMI-DED可以改善TiCp增强Ti6Al4V的组织和力学性能。
https://doi.org/10.1016/j.addma.2022.103087
研究结果表明,与DED相比,由FEMI-DED制备的10wt.% TiCp增强Ti6Al4V中的枝晶状TiC(DPT)数量减少,同时形成了大量的颗粒状TiC。TEM显示DPT与α-Ti基体之间的界面为半共格界面,并且存在α- Ti // [1] TiC,(01) α- Ti // (1) TiC取向关系。
图1为FEMI-DED制备的10wt.%TiCp增强Ti6Al4V中树枝状TiC和α-Ti之间的界面:(a)明场图像;(b)TiC和(c)α-Ti的SAED;(d)界面处的HRTEM;(e)对应的FFT衍射图案;(f)对应IFFT图像。
FEMI-DED过程中,感应电流使凝固区域的冷却速率变小,这有利于溶质的扩散和残余应力的释放。熔池后部的温度梯度G减小,生长速率R增加,使得成核倾向增大。另一方面,由于熔池中不均匀的交变电磁力产生的压拉力和剪切力,以及溶质驱动的重熔作用使得TiC发生破碎,从而对复材组织形态实现了有效的调控。
图2(a)DED和FEMI-DED中位于1900K和2050K之间的区域节点处的温度梯度G和生长速率R,以及(b)G和(c)R的统计结果
图4 由DED和FEMI-DED制备的复合材料的工程应力-应变曲线
以上研究成果以题为“TiCp reinforced Ti6Al4V of Follow-up Synchronous Electromagnetic Induction-Laser Hybrid Directed Energy Deposition: Microstructure Evolution and Mechanical Properties”发表在Additive manufacturing 期刊。
l 谷专栏 l
欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。
白皮书下载 l 加入
QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源
l 链接到
网站原文。